
gordon-dns
Release 0.0.1.dev10

Apr 05, 2023

Contents

1 Requirements 3

2 Development 5

3 Code of Conduct 7

4 User’s Guide 9

5 Project Information 19

6 Indices and tables 25

Python Module Index 27

Index 29

i

ii

gordon-dns, Release 0.0.1.dev10

Service to consume hostname-related events from a pub/sub and add, update, & delete records for a 3rd party DNS
provider.

Release v0.0.1.dev10 (What’s new?).

Warning: This is still in the planning phase and under active development. Gordon should not be used in
production, yet.

Contents 1

gordon-dns, Release 0.0.1.dev10

2 Contents

CHAPTER 1

Requirements

For the initial release, the following will be supported:

• Python 3.6

• Google Cloud Platform

Support for other Python versions and cloud providers may be added.

3

gordon-dns, Release 0.0.1.dev10

4 Chapter 1. Requirements

CHAPTER 2

Development

For development and running tests, your system must have all supported versions of Python installed. We suggest
using pyenv.

2.1 Setup

$ git clone git@github.com:spotify/gordon.git && cd gordon
make a virtualenv
(env) $ pip install -r dev-requirements.txt

2.2 Running tests

To run the entire test suite:

outside of the virtualenv
if tox is not yet installed
$ pip install tox
$ tox

If you want to run the test suite for a specific version of Python:

outside of the virtualenv
$ tox -e py36

To run an individual test, call pytest directly:

inside virtualenv
(env) $ pytest tests/test_foo.py

5

https://github.com/yyuu/pyenv

gordon-dns, Release 0.0.1.dev10

2.3 Build docs

To generate documentation:

(env) $ pip install -r docs-requirements.txt
(env) $ cd docs && make html # builds HTML files into _build/html/
(env) $ cd _build/html
(env) $ python -m http.server $PORT

Then navigate to localhost:$PORT!

To watch for changes and automatically reload in the browser:

(env) $ cd docs
(env) $ make livehtml # default port 8888
to change port
(env) $ make livehtml PORT=8080

6 Chapter 2. Development

CHAPTER 3

Code of Conduct

This project adheres to the Open Code of Conduct. By participating, you are expected to honor this code.

7

https://github.com/spotify/code-of-conduct/blob/master/code-of-conduct.md

gordon-dns, Release 0.0.1.dev10

8 Chapter 3. Code of Conduct

CHAPTER 4

User’s Guide

4.1 Configuring the Gordon Service

Main module to run the Gordon service.

The service expects a gordon.toml and/or a gordon-user.toml file for configuration in the current working
directory, or in a provided root directory.

Any configuration defined in gordon-user.toml overwrites those in gordon.toml.

Example:

$ python gordon/main.py
$ python gordon/main.py -c /etc/default/
$ python gordon/main.py --config-root /etc/default/

4.1.1 Example Configuration

An example of a gordon.toml file:

Gordon Core Config
[core]
plugins = ["foo.plugin"]
debug = false
metrics = "ffwd"

[core.route]
consume = "enrich"
enrich = "publish"
publish = "cleanup"

[core.logging]
level = "info"
handlers = ["syslog"]

9

gordon-dns, Release 0.0.1.dev10

fmt = "%(created)f %(levelno)d %(message)s"
date_fmt = "%Y-%m-%dT%H:%M:%S"
address = ["10.99.0.1", "514"]

Plugin Config
["foo"]
global config to the general "foo" package
bar = baz

["foo.plugin"]
specific plugin config within "foo" package
baz = bla

You may choose to have a gordon-user.toml file for development. All tables are deep merged into gordon.
toml, to limit the amount of config duplication needed. For example, you can override core.debug without having
to redeclare which plugins you’d like to run.

[core]
debug = true

[core.logging]
level = "debug"
handlers = ["stream"]

4.1.2 Supported Configuration

The following sections are supported:

core

plugins=LIST-OF-STRINGS
Plugins that the Gordon service needs to load. If a plugin is not listed, Gordon will skip it even if there’s
configuration.

The strings must match the plugin’s config key. See the plugin’s documentation for config key names.

debug=true|false
Whether or not to run the Gordon service in debug mode.

If true, Gordon will continue running even if installed & configured plugins can not be loaded. Plugin excep-
tions will be logged as warnings with tracebacks.

If false, Gordon will exit out if it can’t load one or more plugins.

metrics=STR
The metrics provider to use. Depending on the provider, more configuration may be needed. See provider
implementation for details.

core.logging

level=info(default)|debug|warning|error|critical
Any log level that is supported by the Python standard logging library.

10 Chapter 4. User’s Guide

https://docs.python.org/3/library/logging.html#module-logging

gordon-dns, Release 0.0.1.dev10

handlers=LIST-OF-STRINGS
handlers support any of the following handlers: stream, syslog, and stackdriver. Multiple handlers
are supported. Defaults to syslog if none are defined.

Note: If stackdriver is selected, ulogger[stackdriver] needs to be installed as its dependencies
are not installed by default.

Other key-value pairs as supported by ulogger will be passed into the configured handlers. For example:

[core.logging]
level = "info"
handlers = ["syslog"]
address = ["10.99.0.1", "514"]
fmt = "%(created)f %(levelno)d %(message)s"
date_fmt = "%Y-%m-%dT%H:%M:%S"

core.route

A table of key-value pairs of phases used to indicate the route the a message should take. All keys should correspond
to either the start_phase attribute of a runnable plugin or the phase of a message handling plugin. Values may only
correspond to phase of a message handling plugin.

[core.route]
start_phase = "phase2"
phase2 = "phase3"

4.2 Gordon’s Plugin System

Module for loading plugins distributed via third-party packages.

Plugin discovery is done via entry_points defined in a package’s setup.py, registered under 'gordon.
plugins'. For example:

setup.py
from setuptools import setup

setup(
name=NAME,
snip
entry_points={

'gordon.plugins': [
'gcp.gpubsub = gordon_gcp.gpubsub:EventClient',
'gcp.gce.a = gordon_gcp.gce.a:ReferenceSourceClient',
'gcp.gce.b = gordon_gcp.gce.b:ReferenceSourceClient',
'gcp.gdns = gordon_gcp.gdns:DNSProviderClient',

],
},
snip

)

Plugins are initialized with any config defined in gordon-user.toml and gordon.toml. See Configuring the
Gordon Service for more details.

4.2. Gordon’s Plugin System 11

https://github.com/spotify/ulogger

gordon-dns, Release 0.0.1.dev10

Once a plugin is found, the loader looks up its configuration via the same key defined in its entry point, e.g. gcp.
gpubsub.

The value of the entry point (e.g. gordon_gcp.gpubsub:EventClient) must point to a class. The plugin class
is instantiated with its config.

A plugin will not have access to another plugin’s configuration. For example, the gcp.gpusub will not have access
to the configuration for gcp.gdns.

See Gordon’s Plugin System for details on how to write a plugin for Gordon.

4.2.1 Writing a Plugin

Todo: Add documentation once interfaces are firmed up

4.3 API Reference

4.3.1 main

Main module to run the Gordon service.

The service expects a gordon.toml and/or a gordon-user.toml file for configuration in the current working
directory, or in a provided root directory.

Any configuration defined in gordon-user.toml overwrites those in gordon.toml.

Example:

$ python gordon/main.py
$ python gordon/main.py -c /etc/default/
$ python gordon/main.py --config-root /etc/default/

gordon.main.setup(config_root=”)
Service configuration and logging setup.

Configuration defined in gordon-user.toml will overwrite gordon.toml.

Parameters config_root (str) – Where configuration should load from, defaults to current
working directory.

Returns A dict for Gordon service configuration.

4.3.2 router

Core message routing logic for the plugins within Gordon Service.

Messages received on the success channel will be routed to the next designated plugin phase. For example, a message
that has a consume phase will be routed to the installed enricher provider (or publisher provider if no enricher
provider is installed).

If a message fails its next phase, its phase will be updated to drop and routed to the event consumer provider for
cleanup.

12 Chapter 4. User’s Guide

https://docs.python.org/3/library/stdtypes.html#str

gordon-dns, Release 0.0.1.dev10

Attention: The GordonRouter only supports the following two phase routes:

1. consume -> enrich -> publish -> done

2. consume -> publish -> done

Future releases may support more configurable phase routings.

class gordon.router.GordonRouter(phase_route, success_channel, error_channel, plugins, met-
rics)

Route messages to the appropriate plugin destination.

Attention: error_channel is currently not used in this router, and may be removed entirely from all interface
definitions.

Parameters

• phase_route (dict(str, str)) – The route messages should follow.

• success_channel (asyncio.Queue) – A sink for successfully processed gordon.
interfaces.IEventMessage s.

• error_channel (asyncio.Queue) – A sink for gordon.interfaces.
IEventMessage s that were not processed due to problems.

• plugins (list) – Instantiated message handling plugins.

• metrics (obj) – Implemented IMetricRelay interface to emit metrics.

4.3.3 plugins_loader

Module for loading plugins distributed via third-party packages.

Plugin discovery is done via entry_points defined in a package’s setup.py, registered under 'gordon.
plugins'. For example:

setup.py
from setuptools import setup

setup(
name=NAME,
snip
entry_points={

'gordon.plugins': [
'gcp.gpubsub = gordon_gcp.gpubsub:EventClient',
'gcp.gce.a = gordon_gcp.gce.a:ReferenceSourceClient',
'gcp.gce.b = gordon_gcp.gce.b:ReferenceSourceClient',
'gcp.gdns = gordon_gcp.gdns:DNSProviderClient',

],
},
snip

)

Plugins are initialized with any config defined in gordon-user.toml and gordon.toml. See Configuring the
Gordon Service for more details.

4.3. API Reference 13

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/asyncio-queue.html#asyncio.Queue
https://docs.python.org/3/library/asyncio-queue.html#asyncio.Queue
https://docs.python.org/3/library/stdtypes.html#list

gordon-dns, Release 0.0.1.dev10

Once a plugin is found, the loader looks up its configuration via the same key defined in its entry point, e.g. gcp.
gpubsub.

The value of the entry point (e.g. gordon_gcp.gpubsub:EventClient) must point to a class. The plugin class
is instantiated with its config.

A plugin will not have access to another plugin’s configuration. For example, the gcp.gpusub will not have access
to the configuration for gcp.gdns.

See Gordon’s Plugin System for details on how to write a plugin for Gordon.

gordon.plugins_loader.load_plugins(config, plugin_kwargs)
Discover and instantiate plugins.

Parameters

• config (dict) – loaded configuration for the Gordon service.

• plugin_kwargs (dict) – keyword arguments to give to plugins during instantiation.

Returns list of names of plugins, list of instantiated plugin objects, and any errors encountered while
loading/instantiating plugins. A tuple of three empty lists is returned if there are no plugins found
or activated in gordon config.

Return type Tuple of 3 lists

4.3.4 interfaces

interface gordon.interfaces.IEventMessage
A discrete unit of work for Gordon to process.

Gordon expects plugins to return or accept objects that implement this interface in order to route them to other
plugins, and handle retries or cleanup in case of errors.

msg_id
Identifier for the event message instance.

phase
Variable phase of the event message.

__init__(msg_id, data, history_log, phase=None)
Initialize an EventMessage.

Parameters

• msg_id (str) – Unique message identifier.

• data (dict) – Data required to update DNS records.

• history_log (list) – Log of actions performed on message.

• phase (str) – Current phase.

append_to_history(entry, plugin_phase)
Append entry to the IEventMessage’s history_log.

Parameters

• entry (str) – Information to append to log.

• plugin_phase (str) – Phase of plugin that created the log entry message.

update_phase(new_phase)
Update the phase of a message to new phase.

14 Chapter 4. User’s Guide

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

gordon-dns, Release 0.0.1.dev10

Parameters new_phase (str) – Phase to update the message to.

interface gordon.interfaces.IRunnable
Extends: gordon.interfaces.IGenericPlugin

Runnable plugin to produce event messages for Gordon to process.

The plugin also has the ability to send gordon.interfaces EventMessage objects to both success and
error channels. At least one runnable plugin is required to run Gordon.

start_phase
Starting phase for event messages.

__init__(config, success_channel, error_channel, metrics, **kwargs)
Initialize a runnable plugin.

Parameters

• config (dict) – Plugin-specific configuration.

• success_channel (asyncio.Queue) – A sink for successfully processed
IEventMessages.

• error_channel (asyncio.Queue) – A sink for IEventMessages that were not pro-
cessed due to problems.

• metrics (obj) – Optional obj used to emit metrics.

run()
Begin consuming messages using the provided event loop.

interface gordon.interfaces.IMessageHandler
Extends: gordon.interfaces.IGenericPlugin

Plugin which performs some operation on an event message.

The Gordon core router will use its phase_route to direct messages produced by any runnable plugins the
appropriate message handling plugins, identified by their phase attribute. At least one message handling plugin
is required to run Gordon.

phase
Plugin phase

__init__(config, metrics, **kwargs)
Initialize a message handler.

Parameters

• config (dict) – Plugin-specific configuration.

• metrics (obj) – Obj used to emit metrics.

handle_message(event_message)
Perform some operation on or triggered by an event message.

Parameters event_message (IEventMessage) – Message on which to operate.

interface gordon.interfaces.IGenericPlugin
Do not implement this interface directly.

Use gordon.interfaces.IRunnable, or gordon.interfaces.IMessageHandler instead.

shutdown()
Perform any actions required to gracefully shutdown plugin.

4.3. API Reference 15

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/asyncio-queue.html#asyncio.Queue
https://docs.python.org/3/library/asyncio-queue.html#asyncio.Queue
https://docs.python.org/3/library/stdtypes.html#dict

gordon-dns, Release 0.0.1.dev10

interface gordon.interfaces.IMetricRelay
Manage Gordon metrics.

incr(metric_name, value=1, context=None, **kwargs)
Increase a metric by 1 or a given amount.

Parameters

• metric_name (str) – Identifier of the metric.

• value (int) – (optional) Value with which to increase the metric.

• context (dict) – (optional) Additional key-value pairs which further describe the met-
ric, for example: {‘remote-host’: ‘1.2.3.4’}

timer(metric_name, context=None, **kwargs)
Get a timer object which implements ITimer.

Parameters

• metric_name (str) – Identifier of the metric.

• context (dict) – (optional) Additional key-value pairs which further describe the met-
ric, for example: {‘unit’: ‘seconds’}

set(metric_name, value, context=None, **kwargs)
Set a metric to a given value.

Parameters

• metric_name (str) – Identifier of the metric.

• value (number) – The value of the metric.

• context (dict) – (optional) Additional key-value pairs which further describe the met-
ric, for example: {‘app-version’: ‘1.5.3’}

cleanup(**kwargs)
Perform cleanup tasks related to metrics handling.

4.4 Metrics Implementations

4.4.1 ffwd

Gordon ships with a simple ffwd metrics implementation, which can be enabled via configuration. This module
contains the SimpleFfwdRelay, and all required classes that it uses to send messsages to the ffwd daemon via UDP.

The SimpleFfwdRelay requires no configuration, but can be customized. The defaults that may be overridden are
shown below.

[ffwd]
to identify the service creating metrics
key = 'gordon-service'

the address of the ffwd daemon (see: UDPClient)
ip = "127.0.0.9"
port = 19000

a scaling factor for timing (see: FfwdTimer)
time_unit = 1E9

16 Chapter 4. User’s Guide

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://github.com/spotify/ffwd

gordon-dns, Release 0.0.1.dev10

class gordon.metrics.ffwd.SimpleFfwdRelay(config)
Metrics relay which sends to FFWD immediately.

The relay does no client-side aggregation and metrics are emitted immediately. The relay uses a combination of
the key and attributes fields to semantically identify metrics in ffwd.

Parameters config (dict) – Configuration with optional keys described above.

cleanup()
Not used.

incr(metric_name, value=1, context=None, **kwargs)
Increase a metric by 1 or a given amount.

Parameters

• metric_name (str) – Identifier of the metric.

• value (int) – (optional) Value with which to increase the metric (default: 1).

• context (dict) – (optional) Additional key-value pairs which further describe the met-
ric, for example: {‘remote-host’: ‘1.2.3.4’}

set(metric_name, value, context=None, **kwargs)
Set a metric to a given value.

Parameters

• metric_name (str) – Identifier of the metric.

• value (number) – The value of the metric.

• context (dict) – (optional) Additional key-value pairs which further describe the met-
ric, for example: {‘app-version’: ‘1.5.3’}

timer(metric_name, context=None, **kwargs)
Create a FfwdTimer.

Parameters

• metric_name (str) – Identifier of the metric.

• context (dict) – (optional) Additional key-value pairs which further describe the met-
ric, for example: {‘unit’: ‘seconds’}

class gordon.metrics.ffwd.FfwdTimer(metric, udp_client, time_unit=None)
Timer which sends UDP messages to FFWD on completion.

Parameters

• metric (dict) – Dict representation of the metric to send.

• udp_client (UDPClient) – A metric sending client.

• time_unit (number) – (optional) Scale time unit for use with time.perf_counter(), for
example: 1E9 to send nanoseconds.

start()
Start timer.

stop()
Stop timer.

class gordon.metrics.ffwd.UDPClient(ip=None, port=None, loop=None)
Client for sending UDP datagrams.

Parameters

4.4. Metrics Implementations 17

https://github.com/spotify/ffwd/tree/master/modules/json
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

gordon-dns, Release 0.0.1.dev10

• ip (str) – (optional) Destination IP address (default: 127.0.0.1).

• port (int) – (optional) Destination port (default: 9000).

• loop (asyncio.AbstractEventLoop impl) – (optional) Event loop.

send(metric)
Transform metric to JSON bytestring and send to server.

Parameters metric (dict) – Complete metric to send as JSON.

class gordon.metrics.ffwd.UDPClientProtocol(message)
Protocol for sending one-off messages via UDP.

Parameters message (bytes) – Message for ffwd agent.

connection_made(transport)
Create connection, use to send message and close.

Parameters transport (asyncio.DatagramTransport) – Transport used for sending.

18 Chapter 4. User’s Guide

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/asyncio-protocol.html#asyncio.DatagramTransport

CHAPTER 5

Project Information

5.1 License and Credits

gordon is licensed under the Apache 2.0 license. The full license text can be also found in the source code repository.

5.2 How to Contribute

Every open source project lives from the generous help by contributors that sacrifice their time and gordon is no
different.

This project adheres to the Open Code of Conduct. By participating, you are expected to honor this code. If the core
project maintainers/owners feel that this Code of Conduct has been violated, we reserve the right to take appropriate
action, including but not limited to: private or public reprimand; temporary or permanent ban from the project; request
for public apology.

5.2.1 Communication/Support

Feel free to drop by the Spotify FOSS Slack organization in the #gordon channel.

5.2.2 Contributor Guidelines/Requirements

Contributors should expect a response within one week of an issue being opened or a pull request being submitted.
More time should be allowed around holidays. Feel free to ping your issue or PR if you have not heard a timely
response.

Submitting Bugs

Before submitting, users/contributors should do the following:

19

http://www.apache.org/licenses/LICENSE-2.0
https://github.com/spotify/gordon/blob/master/LICENSE
https://github.com/spotify/code-of-conduct/blob/master/code-of-conduct.md
https://slackin.spotify.com/

gordon-dns, Release 0.0.1.dev10

• Basic troubleshooting:

– Make sure you’re on the latest supported version. The problem may be solved already in a later
release.

– Try older versions. If you’re on the latest version, try rolling back a few minor versions. This will
help maintainers narrow down the issue.

– Try the same for dependency versions - up/downgrading versions.

• Search the project’s issues to make sure it’s not already known, or if there is already an outstanding pull request
to fix it.

• If you don’t find a pre-existing issue, check the discussion on Slack. There may be some discussion history, and
if not, you can ask for help in figuring out if it’s a bug or not.

What to include in a bug report:

• What version of Python is being used? i.e. 2.7.13, 3.6.2, PyPy 2.0

• What operating system are you on? i.e. Ubuntu 14.04, RHEL 7.4

• What version(s) of the software are you using?

• How can the developers recreate the bug? Steps to reproduce or a simple base case that causes the bug is
extremely helpful.

Contributing Patches

No contribution is too small. We welcome fixes for typos and grammar bloopers just as much as feature additions and
fixes for code bloopers!

• Check the outstanding issues and pull requests first to see if development is not already being done for what you
which to change/add/fix.

• If an issue has the available label on it, it’s up for grabs for anyone to work on. If you wish to work on it,
just comment on the ticket so we can remove the available label.

• Do not break backwards compatibility.

• Once any feedback is addressed, please comment on the pull request with a short note, so we know that you’re
done.

• Write good commit messages.

Workflow

• This project follows the gitflow branching model. Please name your branch accordingly.

• Always make a new branch for your work, no matter how small. Name the branch a short clue to the problem
you’re trying to fix or feature you’re adding.

• Ideally, a branch should map to a pull request. It is possible to have multiple pull requests on one branch, but is
discouraged for simplicity.

• Do not submit unrelated changes on the same branch/pull request.

• Multiple commits on a branch/pull request is fine, but all should be atomic, and relevant to the goal of the
PR. Code changes for a bug fix, plus additional tests (or fixes to tests) and documentation should all be in one
commit.

• Pull requests should be rebased off of the develop branch.

20 Chapter 5. Project Information

http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html
http://nvie.com/posts/a-successful-git-branching-model/

gordon-dns, Release 0.0.1.dev10

• To finish and merge a release branch, project maintainers should first create a PR to merge the branch into
develop. Then, they should merge the release branch into master locally and push to master afterwards.

• Bugfixes meant for a specific release branch should be merged into that branch through PRs.

Code

• See docs on how to setup your environment for development.

• Code should follow the Google Python Style Guide.

• Documentation is not optional.

– Docstrings are required for public API functions, methods, etc. Any additions/changes to the API
functions should be noted in their docstrings (i.e. “added in 2.5”)

– If it’s a new feature, or a big change to a current feature, consider adding additional prose documen-
tation, including useful code snippets.

• Tests aren’t optional.

– Any bug fix should have a test case that invokes the bug.

– Any new feature should have test coverage hitting at least $PERCENTAGE.

– Make sure your tests pass on our CI. You will not get any feedback until it’s green, unless you ask for
help.

– Write asserts as “expected == actual” to avoid any confusion.

– Add good docstrings for test cases.

Github Labels

The super secret decoder ring for the labels applied to issues and pull requests.

Triage Status

• needs triaging: a new issue or pull request that needs to be triaged by the goalie

• no repro: a filed (closed) bug that can not be reproduced - issue can be reopened and commented upon for
more information

• won’t fix: a filed issue deemed not relevant to the project or otherwise already answered elsewhere
(i.e. questions that were answered via linking to documentation or stack overflow, or is about GCP prod-
ucts/something we don’t own)

• duplicate: a duplicate issue or pull request

• waiting for author: issue/PR has questions or requests feedback, and is awaiting the other for a re-
sponse/update

Development Status

To be prefixed with Status:, e.g. Status: abandoned.

• abandoned: issue or PR is stale or otherwise abandoned

5.2. How to Contribute 21

https://google.github.io/styleguide/pyguide.html

gordon-dns, Release 0.0.1.dev10

• available: bug/feature has been confirmed, and is available for anyone to work on (but won’t be worked on
by maintainers)

• blocked: issue/PR is blocked (reason should be commented)

• completed: issue has been addressed (PR should be linked)

• wip: issue is currently being worked on

• on hold: issue/PR has development on it, but is currently on hold (reason should be commented)

• pending: the issue has been triaged, and is pending prioritization for development by maintainers

• review needed: awaiting a review from project maintainers

Types

To be prefixed with Type: e.g. Type: bug.

• bug: a bug confirmed via triage

• feature: a feature request/idea/proposal

• improvement: an improvement on existing features

• maintenance: a task for required maintenance (e.g. update a dependency for security patches)

• extension: issues, feature requests, or PRs that support other services/libraries separate from core

5.2.3 Local Development Environment

TODO

5.3 Changelog

5.3.1 0.0.1.dev10 (2020-09-23)

Changed

• Include metric type in attributes when sending metrics.

5.3.2 0.0.1.dev9 (2019-02-28)

Changed

• Deep merge user config file.

5.3.3 0.0.1.dev8 (2018-09-07)

Changed

• Remove mutation of the context passed to ffwd plugin.

22 Chapter 5. Project Information

gordon-dns, Release 0.0.1.dev10

5.3.4 0.0.1.dev7 (2018-06-21)

Fixed

• Add support for ulogger configuration.

5.3.5 0.0.1.dev6 (2018-06-20)

Fixed

• Fix routing for handling more than one message at a time.

• Improve warning log messages when loading plugin phase route.

5.3.6 0.0.1.dev5 (2018-06-18)

Fixed

• Provide router setup with correct number of arguments.

5.3.7 0.0.1.dev4 (2018-06-18)

Added

• Add logging-based default metrics plugin.

• Emit basic metrics from core router.

• Add a basic graceful shutdown mechanism.

5.3.8 0.0.1.dev3 (2018-06-14)

Added

• Add IRunnable, IMessageHandler.

• Add route configuration requirement.

Changed

• Require IEventMessage to have phase and msg_id.

Removed

• Remove IEventConsumerClient, IEnricherClient, IPublisherClient.

5.3. Changelog 23

gordon-dns, Release 0.0.1.dev10

5.3.9 0.0.1.dev2 (2018-06-13)

Added

• Add logic to start installed + configured plugins.

• Add initial routing logic for event messages.

• Add interface definitions for a metrics plugin.

• Add FFWD-compatible metrics plugin.

• Enable plugin loader to load metrics plugin.

Fixed

• Load config only for active plugins.

24 Chapter 5. Project Information

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

25

gordon-dns, Release 0.0.1.dev10

26 Chapter 6. Indices and tables

Python Module Index

g
gordon.main, 9
gordon.metrics.ffwd, 16
gordon.plugins_loader, 11
gordon.router, 12

27

gordon-dns, Release 0.0.1.dev10

28 Python Module Index

Index

Symbols
__init__() (gordon.interfaces.IEventMessage method), 14
__init__() (gordon.interfaces.IMessageHandler method),

15
__init__() (gordon.interfaces.IRunnable method), 15

A
append_to_history() (gordon.interfaces.IEventMessage

method), 14

C
cleanup() (gordon.interfaces.IMetricRelay method), 16
cleanup() (gordon.metrics.ffwd.SimpleFfwdRelay

method), 17
command line option

debug=true|false, 10
handlers=LIST-OF-STRINGS, 10
level=info(default)|debug|warning|error|critical, 10
metrics=STR, 10
plugins=LIST-OF-STRINGS, 10

connection_made() (gor-
don.metrics.ffwd.UDPClientProtocol method),
18

D
debug=true|false

command line option, 10

F
FfwdTimer (class in gordon.metrics.ffwd), 17

G
gordon.main (module), 9, 12
gordon.metrics.ffwd (module), 16
gordon.plugins_loader (module), 11, 13
gordon.router (module), 12
GordonRouter (class in gordon.router), 13

H
handle_message() (gordon.interfaces.IMessageHandler

method), 15
handlers=LIST-OF-STRINGS

command line option, 10

I
IEventMessage (interface in gordon.interfaces), 14
IGenericPlugin (interface in gordon.interfaces), 15
IMessageHandler (interface in gordon.interfaces), 15
IMetricRelay (interface in gordon.interfaces), 15
incr() (gordon.interfaces.IMetricRelay method), 16
incr() (gordon.metrics.ffwd.SimpleFfwdRelay method),

17
IRunnable (interface in gordon.interfaces), 15

L
level=info(default)|debug|warning|error|critical

command line option, 10
load_plugins() (in module gordon.plugins_loader), 14

M
metrics=STR

command line option, 10
msg_id (gordon.interfaces.IEventMessage attribute), 14

P
phase (gordon.interfaces.IEventMessage attribute), 14
phase (gordon.interfaces.IMessageHandler attribute), 15
plugins=LIST-OF-STRINGS

command line option, 10

R
run() (gordon.interfaces.IRunnable method), 15

S
send() (gordon.metrics.ffwd.UDPClient method), 18
set() (gordon.interfaces.IMetricRelay method), 16
set() (gordon.metrics.ffwd.SimpleFfwdRelay method), 17

29

gordon-dns, Release 0.0.1.dev10

setup() (in module gordon.main), 12
shutdown() (gordon.interfaces.IGenericPlugin method),

15
SimpleFfwdRelay (class in gordon.metrics.ffwd), 16
start() (gordon.metrics.ffwd.FfwdTimer method), 17
start_phase (gordon.interfaces.IRunnable attribute), 15
stop() (gordon.metrics.ffwd.FfwdTimer method), 17

T
timer() (gordon.interfaces.IMetricRelay method), 16
timer() (gordon.metrics.ffwd.SimpleFfwdRelay method),

17

U
UDPClient (class in gordon.metrics.ffwd), 17
UDPClientProtocol (class in gordon.metrics.ffwd), 18
update_phase() (gordon.interfaces.IEventMessage

method), 14

30 Index

	Requirements
	Development
	Code of Conduct
	User’s Guide
	Project Information
	Indices and tables
	Python Module Index
	Index

